(2)

Q1.

(a)	Water has a high heat	capacity and	a large laten	t heat of vaporisation.
-----	-----------------------	--------------	---------------	-------------------------

Describe the importance of each of these properties to living organisms.
High heat capacity
Large latent heat of vaporisation

(b) The figure below shows that water loss from a porous pot can cause the upward movement of water.

Biologists have concluded that the experiment in the figure above supports the cohesion–tension theory of water transport in the xylem.

(c)

above.	ie figure	
		(3)
An air bubble was introduced into the glass tubing in the figure a air bubble moved a distance (d) of 1.5 cm in 120 minutes. The r lumen (hole) of the glass tubing was 0.6 cm	above. The adius of the	
Use this information and the formula $\pi r^2 d$ to calculate the rate of movement in the glass tubing in cm ³ hour ⁻¹ .	f water	
Use π = 3.14 in your calculation.		
Answer	_ cm³ hour ^{_1}	/4\
	(Total 6 ma	(1) arks)